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The paper deals with four schemes, each of three out of the particles X, A, Y, C, consisting of two 

I '" I coupled autocatalytic blocks of the type Q -->- X -->- A -~ Y -+ C. The schemes showing relative 
I t I 

stability of the Y particle or its dimer can exhibit a limit cycle, the other have always a stable 
stationary point. The scheme of four particles X, A, Y, Cor dimers of particles X, Y can exhibit 
an unstable stationary point with the limit cycle. For the individual cases conditions were derived 
for the rate constants sufficient for formation of the limit cycle, and they are discussed from the 
point of view of available experimental data on the reaction of bromate with phenol and aniline. 

In the context of studies of mechanism of the oscillation reaction between bromate 
and phenol1 ,2 we examined3 the kinetic scheme of reactions which were always 
of the 2. order and formed two autocatalytic blocks coupled by a common reaction 
component (Scheme 1 for ks and k9 --. (0). Stability of this scheme was examined3 

under the presumption that the labile intermediates X and Yare in steady state 
(k2 and k4 --. (0), and for the resulting two-component scheme (A, C particles) it 
was shown that the particles A and C exhibit oscillations with very small damping 
at suitable values of the rate constants. The same result was also obtained for the 
three-particle scheme (A, C, X) when only the Y component was considered in 
steady state. As in the real system Br03 - phenol the X and Y particles are radicals. 
it seems useful to extend the scheme studied earlier by dimers of the compounds X 
and Y (compounds Nand M in Scheme 1) and to study the behaviour and possibility 
of oscillations in the individual three- and four-particle schemes which is the aim 
of the present communication. 

THEORETICAL 

The basic kinetic scheme has the following form: 
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It would be correct to formulate most of these steps (especially 6,7,8,9) as reversible, 
but they were considered unidirectional in order to simplify the calculations. For 
determination of conditions of unstability, however, this simplification represents 
no defect. Concentrations of the starting substances Q and Z are considered to be 
pseudo-constant. In the real system, Q, X, A, Y, C correspond to the bromine 
particles of the valence 5, 4, 3, 2, 1, respectively, Z means the organic substrate, 
and P stands for its bromo derivative. The corresponding kinetic equations are 
Eqs (2a -f) (for simplicity, both the particles and their concentrations are denoted 
by the same symbol). 

dX/dt = kl Q . Z - k2 X . Z + 2k9 N 

dN/dt = k7 Q . A - k9 N 

(a) (2) 

(b) 

dA/dt = k2 X . Z - k7 Q . A - k3 A . Z - k6 A . C (c) 

dY/dt = k3 A. Z - k4 Y. Z + 2ks M (d) 

dM/dt = k6 A. C - kg M (e) 

dC/dt = k4 Y . Z - k6 A. C - ks C. Z (I) 

By putting the left sides equal to zero we obtain the concentrations of the substances 
at the stationary point (the 0 index) as the functions of AO: by addition of(2c), (2a), 
and the double of (2b) and addition of (2d), (2f), and the double of (2e), and by 
expressing CO we get (3a), by introducing into (2e) we get (3c), and from (2b) then 
we get (3b). The values (3d, e) follow 

CO = kl Q . Z + k7 Q . A ° ~ k7 Q . A ° 
k5 Z ksZ 

(a) (3) 

N° = k7 Q . A ° / k9 (b) 

Collection Czechoslovak Chern. Commun. [Vol. 51] [1986] 



Kinetic Scheme of Oscillation Reaction 481 

k2 Z 
(d) 

yO = (k3 AO. Z + 2ks MO)/k4 Z (e) 

from Eqs (2a) and (2d). The approximate expressions apply to kl -> O. 

Addition of (2d), (2f), and the double of (2e) gives the relation (k3 A ° . Z + k6A ° . 
. CO - ks CO . Z) = 0 into which (3a) is introduced for CO to give a quadratic 
equation for A ° 

which for sufficiently low kl values leads to the simplification 

(3g) 

The matrix* of partial derivatives of the reaction rates at the stationary point 
reads as follows: 

(ax ax ax 
ax aN ac 
aN aN aN 
-

at:: ax aN ac -

ae ae ae 
-

ax aN ac 
-k2 Z 2k9 0 0 0 0 

0 -k9 k7 Q 0 0 0 

k2 Z 0 
-k2 xOZ 

0 0 -k6 AO 
AO 

- (4) 
0 0 k3 Z -k4Z 2ks 0 

0 0 k6 CO 0 -ks k6 AO 

0 0 -k6 CO k4 Z 0 
-k4 ZYo 

\ CO 

* In literature on chemical oscillations this matrix is usually denoted as community matrix 
which is an expression taken4 from mathematical analysis of stability of social-economical systems. 
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482 Tockstein: 

and it is seen that conditions of qualitative instabiIity4 are fulfilled with the members 
1)(12·01:23·01:31, 01:36 .01:63 , 0I:4S • OI:S6 • 01:64,01:64 • 0I:4~· 01:36• 

As the characteristical equation of the 6th order corresponding to the matrix (4) 
is much too complex for any discussion of stability, we shall restrict the discussion 
to examination of stability of the 3rd and 4th order equations corresponding to 
three- and four-particle systems. The community matrix of these simplified schemes 
is obtained from the matrix (4) by carrying out linear combination of its rows in 
such way that the rate constants present in kinetic products of the compounds might 
disappear which are omitted in Scheme 1, and also excluded are the columns cor­
responding to the derivatives with respect to these compounds. 

Scheme of A, Y, C Particles 

If constants k2' ks, k9 of Scheme 1 are considered to be sufficiently large. then the 
compounds X, N, M are in steady state, and the system (2) is reduced to a system 
of three differential equations for compounds A, Y, C. The respective community 
matrix P is obtained from (4) by addition of the first, the double of the second, and 
the third rows (elimination of k2 and kg), and addition of the fourth and the double 
of the fifth rows (elimination of ks), and by omitting the first, second, and fifth 
columns, the expressions for P1I and P21 being -kl QZ/Ao according to Eq. (3d) 
and k4 yOZ/Ao according to Eqs (2d, e), respectively, hence the p matrix and the 
characteristical equation read as follows: 

QZ 
-k1 -

AO 
0 -k6 AO \ 

p= 
yOZ 

-k4Z 2k6 AO k4 --
AO 

(5a) 

-k6 C k4 Z 
ZYo 

\ 
-k4 --

CO } 

- (kl ~~ + A) 0 -k6 AO 

yOZ 
-(k4Z + A) 2k6 AO = o. k4 --

AO 
(5b) 

-k6 C o k4 Z (Zyo ) - k4 CO + A 

The p matrix indicates a possibility of instability due to the terms P3I . P 13' P23 . P32, 
P21 . P13 . P32· After development of the determinant, the characteristical equation 
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Kinetic Scheme of Oscillation Reaction 483 

has the form: 

A? + ).2 (kl QZ + k4 Z (1 + YO)) + A. (k4 Z2k3 AO + k4 kl QZ2 (1 + YO) _ 
AO CO CO AO CO 

- k~AOeO) + k4 Z2 (kl ~~ k3 + ksk6 CO) == A.3 + a l A.2 + a2A. + a3 = 0, (5c) 

the relations k4 Zyo/eo - 2k6 AO = k3 AoZ/eo (following from Eqs (2d, e)) and 
k4 yOZ - k6 A °eo = ks eOz (from Eq. (2f)) being used in its modification. 

According to the Hurwitz criterion 8 , the necessary and sufficient condition of 
stability of a stationary point is given by the requirements: 

(6a, b, c) 

A breach of any of the conditions (6a, b, c) results in instability of the stationary 
point and, hence, in explosion or in oscillations. As the a 1 and a3 coefficients are 
always positive, the condition (6b) can only be broken; then (6c) is broken auto­
matically. However, the whole relation ala2 < a3 is much too complex for discus­
sion, so we shall restrict it to the sufficient condition, i.e. a2 ~ 0, even though the 
possible un stability region is thereby somewhat reduced. Hence the sufficient con­
dition of instability reads as follows: 

(7a) 

and it implicates one negative root A. and two positive and/or complex roots with 
real part. For sufficiently low k I values it can be transformed into Eq. (7b) by facto­
ring out A ° leo and introducing (3a). 

(7b) 

If the system of the A, Y, e particles should exhibit unstability, it is necessary ac­
cording to the relation (7b) that the k3 and k4 constants were not too large and k7 
too small. If the relation (7b) is fulfilled, the trajectory exhibits a limit cycle whose 
A - e and Y - e trajectories are very similar in shape to the A - e and M - e trajec­
tories (Fig. 1). Magnitude of the limit cycle and of the amplitude of concentrations 
increase with increasing k7 and ks and with decreasing k3' k4' k6' which was found 
by an analogue computer. 

For k4 ~ 00 the stationary point becomes stable, and the scheme is transformed 
into a two-particle one (A, C), and the A.i> A.2 roots have negative real part with the 
discriminant 3 
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484 Tockstein: 

D = (k\ Q _ k3 A 0)2 _ 4k k CO 
AD CO 6 S Z ' (8a) 

which secures damped oscillations of the concentrations of A, C for D < 0 and 
a monotonous course for D > O. 

Hence by increasing k4' i.e. by decreasing the stability of the intermediate Y, it is 
possible to change from the undamped oscillations to the damped ones or to monoto­
nous course of the concentrations depending on the D value. If the limit cycle is 
to be changed (by increasing k4 ) into a stationary point without rotational trajectories 
of spiral shape, i.e. from the non-damped oscillations directly to the monotonous 
course and vice versa, then it is necessary (according to (8a) and (7b)) that the rela­
tions (8b, c) were simultaneously fulfilled on the limit cycle (for k\ -+ 0): 

(k3kS Z!k7 QY > 4ks(k7 Q!Z - k3) , (8b) 

(k3k4)1/2 < k7 Q!Z - k3 . (8c) 

,--- ..... ... 

FIG. I 
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The limit cycle of A, M, C particles. The 
trajectories of relative concentrations: 1 phase 
plane A-C, 2 phase plane M-c' The 
solution by means of the analogue computer 
for chosen rate constants: k 1 = 10 - 2; 

k3 = 7'8.10- 2; ks = 88,1.10- 2; k6n = 

= 6'72; k7n = 0'673; ks/Z = 0,844; klO = 
00 0'133 

FIG. 2 

Scheme of delimitation of stability and non­
stability region of stationary point in the 
scheme of A, Y, C particles. The dashed line 
denotes the 12 function with D = 0; the 
heavy line denotes the 11 function forming 
the boundary of non-stability 
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If we denote k7 Qjk3 Z = X, ksjk3 = y, (k4jkS)1/2 = u, then the relations (Bb, c) are 
fulfilled for the points whose positive coordinates x - 1, y, U lie outside the body 
given by the surface y = «x - 1)ju)2 = flex, u) and inside the body given by the 
surface y = 4x2(x - 1) = f2(x, u), hence, for an u chosen as a parameter there 
must exist real points of intersection of the curves fl and f2' which necessitates 
16u2 < 1, i.e. k4 < ksj16. At a chosen u value these are points lying in the region 
determined by the two curves and points of intersection Xl,2 = [1 ± v'(1 - 16u 2)]j 
j8u 2 (see the vertically hatched area in Fig. 2). 

Scheme of A, M, C Particles 

If constants k2' k4' k9 of Scheme 1 are considered to be sufficiently large, then the 
compounds X, Y, N are in steady state, and the system (2) is reduced to a system 
of three differential equations for the compounds A, M, C. The corresponding 
community matrix "t is obtained from (4) by addition of the first and the third rows 
and the double of the second row (elimination of k2 and k9) and by addition of the 
rows 4 and 6 (elimination of k4) in the form ("tll = - kl Qzj A 0): 

(9) 

And the characteristical equation reads as follows: 

- elA~Z + l) 0 -k6 AO 

k6 CO -(kg + l) k6 AO 
= O. (lOa) 

k3 Z - k6 CO 2ks -(k6Ao+ksZ+l) 

The "t matrix indicates a possibility of instability due to the members "t32 • "t23' 

"t13 • Y31' and Y21 • Y13 . "t32' After development of the determinant, the characteristical 
equation has the following form: 

l3 + )"2(kl QZjAO + ks Z + k6 AO + kg) + l(kg(ks Z - k6 AO) + 

+ (k 1 QZjAO) (k6 AO + ks Z + kg) + k6 AO(k3 Z - k6 Co» + 

+ k6k9 AO(k3 Z + k6 CO) + (kl QZjAO) kg(ks Z - k6 AO) = O. (lOb) 

A sufficient condition of instability of the stationary point is a negative or zero 
value of the coefficient at ;" i.e. 

Collection Czechoslovak Chern. Commun. [Vol. 51) [19861 



486 Tockstein: 

kgks Z - kgk6 AO + kl QZ(k6 + (ks Z + ks)jAO) + k3k6 AOZ - k~ AOCo ~ 0, 

(lla) 

which can be modified by introducing (3g) for AO and the simplified equation (3a) 
for CO to give the form (n = QjZ): 

3 + ksjk7 Q + () ~ nk7jk3 + 2k3jnk7 

() = (nklk6/k3kS)(1 + k7n/(k7n - k3) + (1 + kgjks Z». (lIb) 

Small values of the rate constants kl> k3' k6' ks and large values of the constants 
ks, k7 and of the n parameter contribute to fulfilling of this inequality, i.e. to forma­
tion of instable stationary point. If Eq. (11 b) is fulfilled, then there exits a limit cycle 
(Fig. 1). A solution by means of an analogue computer showed that magnitude 
of the limit cycle and of the amplitude of concentrations of the particles A, M, Care 
increased with decreasing k3' k6' ks, klO and with increasing ks and k7· Decreasing 
k3 and increasing k7 result in making more distinct the concave character of the 
A - C curve when going from the maximum A to the maximum C; decreasing k6 
makes more distinct the concave character and decreases the slope of the M - C 
curve in the region of its increase at small values of M and C; the decrease in kg 
has the opposite effect. 

So far the existence of the limit cycle in the scheme of A, M, C particles has been 
proveds by reduction to the two-particle scheme (A, M) with the presumption 
dCjdt = O. 

For kg - 00 the scheme changes into a stable two-particle scheme of compounds 
A, C. If the increase in kg has to change the limit cycle into stable stationary point 
without rotational trajectories, then according to (11 b) and (8a) the inequalities 
(8b) and (lIe) must be fulfilled on the limit cycle (for kl - 0): 

(I Ie) 

If we denote k7 Q/k3 Z = X, ks/k3 = y, ks/ks Z = v, then the inequalities (8b), 
(lIe) are fulfilled for the points with positive coordinates x - 2, y, v lying inside the 
body given by the surface y = 4x2(x - 1) == f2(x, v) and outside the body given 
by the surface 4y = (x - 2)(x - 1)/v == f3(x, v). For a v chosen as a parameter 
there must exist real points of intersection of the curves f2' f3' which necessitates 
that 1 > 32 v, i.e. kg < ks Zj32. The points fulfilling the inequalities (8b), (lIe) 
lie - for the v chosen - in the region determined by the two curves fl' f2 and the 
points of intersection Xl,2 = (1 ± (1 - 32 V)1/2)j8 v (see the vertically hatched 

area in Fig. 3). If Scheme 1 is extended by the step 10 in the form M + Z ~ 2 C 

Collection Czechoslovak Chem. Commun. [Vol. 51) [1988) 



Kinetic Scheme of Oscillation Reaction 487 

proceeding in parallel way to the step 8, then the results obtained remain valid, only 
it is necessary to replace the ks constant by the sum ks + kl0 Z. 

Scheme of X, A, C Particles 

This scheme is formed from Scheme 1 for high values of k4' ks, k9' and it was shown 
in the previous work3 that its stationary point is always stable, and the scheme can 
exhibit slowly damped oscillations at the most. 

Scheme of N, A, C Particles 

This scheme is formed from the previous one, if k2 -+ 00 but k9 is sufficiently small. 
The corresponding community matrix 8 is given by Eq. (12a), and the characteristical 
equation, after development of the determinant, has the shape of Eq. (12b). 

k7Q 0) 
-(kl QZ + 2k9 N°)/Ao -k6 AO 

ks CZ/Ao -k3 AOZ/Co 

A,3 + A,2(k9 + 2k7 Q + k3 AOZ/Co + kl QZ/AO) + 

+ A,«k3 A °Z/CO) (kl QZ/ A ° + 2k7 Q) + ksk6 COZ + 

+ k9(k3 AOZ/Co + kl QZ/AO») + k9(k3kl QZ/Co + ksk6 COZ) = 0 

(12a) 

(12b) 

Although the 8 matrix indicates a possibility of instability with the term 821 • 812, 

the Hurwitz's necessary and sufficient condition of stability ala2 - a3 > 0 is ful-

FIG. 3 

Scheme of delimitation of stability and non­
-stability region of stationary point in the 
scheme of A, M, C particles. The graphical 
symbols have similar meaning as those 
in Fig. 1 
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488 Tockstein: 

filled always here, so the scheme of N, A, C particles cannot lead to undamped 
oscillations. 

Four-Particle Scheme of Compounds N, A, M, C 

For kz, k4 --. 00 and steady states for compounds X and Y the matrix (4) is trans­
formed into a matrix which has the characteristical equation (13a) whose develop­
ment leads to an equation of the 4th order. 

k7 Q 
-(k7 Q + k6 CO + k3 Z + A,) 

k6 CO 
k3 Z - k6 CO 

o 
o 

-(ks + A,) 
2ks 

- ~6 AO 1_ 
k6 A O 1- 0 

-(k6 AO + ks Z + A,) 

(13a) 

In the approximation of kl --.0, the sum k7 Q + k6 CO + k3 Z = (kl QZ + k9 N°)/ 
/ A ° can be replaced by the expression 2k7 Q, and the sum k3 Z + k6 CO can be 
replaced by the expression - ks CoZ/ A 0 , so after development of the determinant, 
the characteristical equation in the mentioned approximation reads as follows: 

A,4 + A,3(ks Z + k6 AO + ks + k9 + 2k7 Q) + A,2(ksk3 AOZ/Co + 

+ (k s Z + k6 A ° + ks) (k9 + 2k7 Q) + k6 A 0(k3 Z - k6 Co» + 

+ A,((ksk3 AoZ/CO)(k9 + 2k7 Q) + ksk6kS COZ + k9k6 AO(k3 Z - k6 Co» + 

+ ksk6kSk9 COZ = o. (I3b) 

For k9 --. 00 Eq. (13b) is reduced to (lOb), for ks --. 00 Eq. (13b) changes to (12b), 
and for simultaneous ks, k9 --. 00 it gives the relation (5a) in the previous communi­
cation3 , in all three cases, of course, in the approximation kl --. O. The Hurwitz 
conditionss of stability of a polynomial of the 4th order are gviven in (14a, b, c, d). 

(14a, b, c, d) 

Comparison with (13b) shows that only a2 or a3 could be negative and, hence, 
could break (with a l and a4 positive) the conditions (14b, c, d) or (14c, d) for a2 ~ 0 
or a3 ~ 0, respectively. But introduction for A 0, CO into az and a3 shows that az 
is always positive, whereas a3 can become negative, so that the only sufficient condi­
tion for formation of unstable stationary point is a 3 ~ 0, and it can be modified into 
the form: 
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which represents a generalization of the condition ( 11 c), and it can be seen that 
a low k9 value, i.e. relative stability of the N particle, acts against formation of the 
limit cycle. 

An interesting result is obtained, if not only the step 8 is extended by the parallel 

reaction M + Z ~ 2 C, but also the step 9 is extended by the parallel reaction 

N + Z ~ 2 A. Then the previous results remain valid, but ks and k9 must be 
replaced by the sums 

(16a, b) 

The relation (15) with the sign of equality represents - at a chosen constant ratio 
W = k7 Q/k3 Z - equation of the surface (k~k~ Z) which, together with the plane 
k~ = 0, represents the space in which the inequality (I5) is fulfilled. The relations 
( 16a, b) represent equation of straight line in the same coordinates. If this straight 
line has two positive real points of intersection with the plane (Fig. 4), then the region 
between them represents the k~, k~, Z values for which the inequality (I5) is fulfilled 
and, hence, there exist an unstable stationary point and the limit cycle. Before and 
after this region the stationary point is stable. This means that at suitable values 
of the rate constants (Eq. (17» the reaction can exhibit a non-oscillating course 
in sufficiently diluted solutions (Z ~ 0), then there exists a region of non-damped 
oscillations at the increased concentration Z (at constant W), and the non-damped 
oscillations again disappear on further increasing the Z concentration. 

FIG. 4 

The surface (ksk9 Z) and straight line (ks(Z), 
k9(Z» 
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490 Tockstein: 

The requirement of the existence of two real positive points of intersection of the 
straight line (16a, b) and the surface (k~k~ Z) necessitates that the quadratic equation 
for Z 

Z2(klO(kll W- 1 + k3(1 + W» - k3kll(W + 2W- 1 - 3» + 

+ Z(ks(kllW-l + k3(1 + W» + k9k 10 W- 1 - k3k9(W+ 2W- 1 - 3» + 

(17) 

had two positive real roots. For considerably high W values, the absolute term of 
Eq. (17) is negligible, so that one root is Zl ~ 0, and the other is Z2 ~ -(ks - k9)/ 

/(k IO - k ll ), which requires ks < k9 or k lO < k ll • 

Four-Particle Scheme of Compounds X, A, Y, C 

For ks, k9 -. 00 the matrix (4) gives the characteristical equation 

2k7Q 
-(k2 XOZ/Ao + A,) 

k4 yOZ/Ao 
-k6 CO 

o 
-k6 AO 
2k6 AO 

-(k4 yoZ/Co + A,) 

=0 (l8a) 

which on development of the determinant and modification reads as follows (in the 
approximation kl -.0): 

A,4 + A,3(k4 Z(1 + yO/CO) + k2 Z + 2k7 Q) + A,2(k4 Z(k3 AOZ/Co + 

+ (1 + yo/eO) (k2 Z + 2k7 Q» - k~ A DCa) + 

+ A,( (k3k4 A °Z/CO) (k2 Z + 2k7 Q) + k4k Sk6 COZ2 - k2 Zk~ A DCa) + 

(l8b) 

For k2 -. 00 and k4 -. 00 it is reduced to Eqs (5b) and (7a) of ref. 3, respectively, 
both in the approximation kl -. O. The sufficient condition of unstability, i.e. 
a2 ~ 0 or a3 ~ 0, again can be fulfilled here only for a3 ~ 0 (a2 being always 
positive after introduction for yO, Co, A 0), and modification gives the relation (l9) 
which represents an extension of (7b) 

and indicates that relative stability of the intermediate X acts against formation of 
unstable stationary point. 
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DISCUSSION 

Comparison of behaviour of the two-particle scheme A, C with the three-particle 
ones A, Y, C or A, M, C or with the four-particle ones X, A, Y, Cor N, A, M, C 
shows that a sufficient stability of the third particle Y or M and high unstability 
of the particle X or N enable formation of unstable stationary point and, hence, 
the existence of non-damped oscillations even in such cases where the two-particle 
scheme (A, C) itself would have positive discriminant and, hence, non-oscillating 
solution due to unfavourable values of kl' k3' ks, k7 constants (Eq. (8a)). 

In real systems where the individual types of intermediates acting as the substrate 
Z can be changed in the course of the reaction (due e.g. to substitution - bromina­
tion) the individual rate constants of the steps 1, 3, 4, 5, 10 (involving the substrate) 
can be changed in the course of the reaction. Decrease of kl' k3' k4' k lO and increase 
of ks can cause fulfilling of the inequality (lIb) or (7b) and thus formation of the 
limit cycle, i.e. non-damped oscillations starting from a certain moment in the reaction 
course (Fig. 5). This represents finishing of the induction period which is of another 
type than that of the mechanisms necessitating only accumulation of some of the 
intermediates (e.g. Br- in Oregonator6) without any change of rate constants of the 
individual steps during the reaction. 

A decision between the two alternatives of evocation of the limit cycle by action 
of the substrate (1. lowering of the constants in the group kl' k3' k4' k 10 ; 2. increase 
of k s) is enabled by the following consideration: in the second alternative the substitu­
tion products of the original substrate react faster than the starting compound Z 
which thus remains in the reaction mixture until the end of the reaction. In the 
opposite case the starting substance Z is consumed preferably so that it disappears 

FIG. 5 

The induction period and development of 
non-damped oscillations. The solution by 
means of the analogue computer in the 
coordinates relative concentration A/Q -
generalized time t. Z with the constants: 
k, =~ 10- 2 , k6n = 6·72; k711 = 0·673; ks/Z 
= 0·844; klO = 0·133. 1: ks = 0·881, k3 
was continuously changed from the value 
(Hi to 0·049 during the induction period. 2: 
k3 ,-= 0·078, ks was continuously changed 
from the value 0·2 to 0·881 during the induc­
tion period 

A/Q 

-----------------------, 

D3L 
15s 

--------------- ----------------------
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at the end of the induction period, and evocation of oscillations must be due to 
lowering of the constants of the first group. This also means that an addition of the 
original substrate Z to the oscillating reaction mixture will suppress the oscillations 
in the first alternative (increase of the constants of the first group), whereas it has 
no effect in the second alternative. An addition of the substitution products of the 
original substrate to the oscillating mixture has no effect in the first alternative, 
whereas in the second alternative it can suppress the oscillations (if besides ks also 
the constants of the first group are increased). Moreover, from the above-mentioned 
consideration it follows that application of the substrate already substituted (as the 
starting substance) can evoke oscillation and shorten the induction period in the 
first alternative, whereas in the second alternative these results need not be observed. 

Experimental findings about reaction of bromate with aniline 7 or phenol1 •2 agree 
fully with the prognoses described and indicate that aniline and phenol obey the 
second and the first alternatives, respectively. 

In the scheme of A, M, C particles the dilution effect also makes itself felt on the 
existence of the limit cycle. If the kinetic equations are written in relative concentra­
tion and in the generalized time, then the initial concentration of the substrate Z 
has no effect on the above-mentioned quantities except ks/Z which increases with 
dilution. At a sufficiently large dilution the limit cycle (i.e. the non-damped oscilla­
tions) disappears. Such behaviour was also observed in the reactions of phenop,2 
and aniline7 with bromate. The scheme of N, A, M, C particles even shows an only 
limited region of dilution in which the non-damped oscillations are possible, as it 
was shown in connection with Eq. (17). 

The results given indicate that Scheme 1 can be considered a suitable basis for 
further investigation of the oscillation reactions of bromate with aromatic substrates. 
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